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A numerical and analytical study of the role of exponentially truncated Lévy flights in the superdiffusive
propagation of fronts in reaction-diffusion systems is presented. The study is based on a variation of the
Fisher-Kolmogorov equation where the diffusion operator is replaced by a �-truncated fractional derivative of
order �, where 1 /� is the characteristic truncation length scale. For �=0 there is no truncation, and fronts
exhibit exponential acceleration and algebraically decaying tails. It is shown that for ��0 this phenomenology
prevails in the intermediate asymptotic regime ��t�1/��x�1 /� where � is the diffusion constant. Outside the
intermediate asymptotic regime, i.e., for x�1 /�, the tail of the front exhibits the tempered decay �
�e−�x /x�1+��, the acceleration is transient, and the front velocity vL approaches the terminal speed v*= ��
−���� /� as t→�, where it is assumed that ����� with � denoting the growth rate of the reaction kinetics.
However, the convergence of this process is algebraic, vL�v*−� / ��t�, which is very slow compared to the
exponential convergence observed in the diffusive �Gaussian� case. An overtruncated regime in which the
characteristic truncation length scale is shorter than the length scale of the decay of the initial condition, 1 /	,
is also identified. In this extreme regime, fronts exhibit exponential tails, ��e−	x, and move at the constant
velocity v= ��−���� /	.
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I. INTRODUCTION

Reaction-diffusion systems have played a predominant
role in the study of pattern formation and nonlinear dynamics
in a large class of phenomena of interest to physics, biology,
chemistry, and engineering; see, for example, Refs. �1,2�, and
references therein. One of the simplest reaction-diffusion
systems is the extensively studied Fisher-Kolmogorov model
that describes the dynamics of a scalar field � in a one-
dimensional domain,

�t� = ��x
2� + ���1 − �� , �1�

where � denotes the diffusivity and � is a constant. The
nontrivial dynamics of reaction-diffusion systems in general
stems from the competition between the diffusivity and the
nonlinearity. In the case of the Fisher-Kolmogorov equation
this competition leads to the propagation of fronts in which
the stable, �=1, state advances through the destabilization of
the �=0 unstable state.

An important and often overlooked assumption in reac-
tion-diffusion models is the use of Laplacian operators ��2

for the description of transport. The use of these operators is
motivated by the Fourier-Fick model according to which the
flux q is assumed to be proportional to the gradient of the
concentration, q=−���. This local prescription, together
with the conservation law �t�=−� ·q, leads to the Laplacian,
diffusive transport operator. From the statistical mechanics
point of view this prescription is linked to the assumption
that the underlying “microscopic” transport process is driven
by an uncorrelated, Markovian, Gaussian process. However,
despite its relative success, experimental, numerical, and the-
oretical evidence indicates that the diffusion model has lim-
ited applicability; see, for example, Refs. �3–6�, and refer-
ences therein. Therefore, a problem of considerable interest
is the study of the role of anomalous diffusion, and Lévy
flights in particular, in reaction-diffusion systems.

Early work on reaction–anomalous-diffusion systems in-
clude Refs. �7–10�. Reference �7� studied bistable reaction
processes and anomalous diffusion caused by Lévy flights.
The interplay of subdiffusion and Turing instabilities was
discussed in Ref. �8�. The role of superdiffusive transport in
the acceleration and algebraic decay of fronts was studied in
the context of a probabilistic approach in Ref. �9� and in the
context of an equivalent fractional Fisher-Kolmogorov equa-
tion in Ref. �10�. It is interesting to note that fronts in chaotic
coupled-map lattices with long-range couplings exhibit an
analogous phenomenology as discussed in Ref. �11�. More
recent works include the study of analytic solutions of frac-
tional reaction diffusion �12�; the study of a reaction-
diffusion system with a bistable reaction term and directional
anomalous diffusion �13�; the study of the construction of
reaction-subdiffusion equations �14�; the study of Turing in-
stabilities �16�; the study of the effect of superdiffusion on
pattern formation selection in the Brusselator model �17�;
and the study of the fractional Ginzburg-Landau and
Kuramoto-Sivashinsky equations �18�, among others.

Evidence of Lévy flights has been found in laboratory
experiments, simple models, and numerical studies of turbu-
lent transport, and the use of fractional diffusion models to
describe these problems has been well documented in the
literature �5�. However, it is plausible that finite-size domain
and decorrelation effects �among other effects� might have
an impact on the Lévy flight dynamics. The evaluation of the
role of these “nonideal” effects on reaction–anomalous-
diffusion systems is a problem of considerable practical rel-
evance. Of particular importance is to determine how, and to
what degree, these effects might mask the underlying Lévy
statistics. The effect of fluctuations caused by finite number
of particles per volume on the superdiffusive propagation of
fronts was studied in Ref. �15�. Here we focus on the role of
truncation effects on Lévy flights driving superdiffusive front
propagation.

Asymptotic analysis plays an important role in the evalu-
ation of nonideal Lévy flight effects. In particular, it is quite
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possible that because of nonideal effects the statistics of the
system will eventually converge to Gaussian. However, the
key issue is to determine the duration of the nondiffusive
transient and the rate of convergence to Gaussian statistics.
This point is clearly illustrated in the ultraslow convergence
to Gaussian statistics in the presence of truncated Lévy
flights. In this case it has been observed that although the
statistics eventually converges to Gaussian �because of the
central limit theorem� a remarkably large number of steps is
needed, and therefore the system effectively behaves nondif-
fusively in the intermediate asymptotic regime of practical
interest �19–23�. In the present paper we explore to what
degree a similar situation occurs in the case of front propa-
gation. In particular, in Ref. �10� it was shown that in the
fractional Fisher-Kolmogorov equation fronts decay algebra-
ically and exhibit exponential acceleration. The goal of this
paper is to present a numerical and analytical asymptotic
study of the effect of truncation on these phenomena. One
problem of special interest is to determine if there is an in-
termediate asymptotic regime where the effects of truncation
are negligible and where the fronts accelerate and exhibit
algebraic tails. Outside such intermediate asymptotic regime
it is expected that the truncation effects will become domi-
nant and that as t→� the front dynamics will eventually
approach in some sense the diffusive Fisher-Kolmogorov dy-
namics. However, the key issue is how long this will take.
This bring us to the second problem of interest in this paper,
which is to determine the rate of convergence to the constant
velocity and exponential tails characteristic of the diffusive
front propagation regime.

Our approach is based on the use of truncated fractional
diffusion operators. Fractional derivatives provide a power-
ful framework to model nondiffusive transport processes
�6,5�. These operators incorporate long-range, nonlocal
transport through the use of slowly decaying kernels. In par-
ticular, in fractional diffusion the Laplacian is replaced by an
integral operator of the form �x

2���x� , t�K�x−x��dx�, where
the kernel K has the asymptotic behavior, K�x−�+1, for 1

�
2. In the context of the continuous time random walk
model the exponent � is related to the stability index of the
underlying Lévy process �6�. However, a potential drawback
of this description is that �-stable Lévy processes have di-
vergent second moments because their corresponding densi-
ties decay as �x−�1+��. This issue has motivated the consid-
eration of truncated Lévy processes that exhibit long-range
dynamics while preserving the finiteness of some �24� or all
moments �19,20,23�. In the case of exponentially truncated
processes, the Lévy density decays as �x−�1+��e−�x, and for
��0 all the moments are finite. In the present paper we limit
attention to this type of process and study the truncated frac-
tional Fisher-Kolmogorov in which the Laplacian operator in
Eq. �1� is replaced by the truncated fractional diffusion op-
erator proposed in Ref. �23�.

The organization of the rest of the paper is as follows. The
next section reviews material on truncated Lévy flights, de-
fines the �-truncated fractional derivatives, and discusses the
fundamental solutions and scaling properties of the truncated
fractional diffusion equation. Section III contains the core of
the numerical results obtained from the integration of the
truncated fractional Fisher-Kolmogorov equation for front-

type initial conditions. Section IV presents an analytical
asymptotic study based on the leading edge approximation.
The conclusions are presented in Sec. V.

II. FRACTIONAL DIFFUSION WITH TRUNCATED
LÉVY FLIGHTS

In the standard fractional diffusion model the transport of
a scalar � is governed by the equation

0
cDt

���x,t� = − a�x� + c�l−�Dx
� + rxD�

��� , �2�

where we have included in addition to the spatial and tem-
poral fractional operator an advective term. The operator on
the left-hand side is the regularized �in the Caputo sense
�25�� fractional time derivative

0
cDt

�� =
1

��1 − ���0

t ��

�t − ��d , �3�

with 0
�
1, and the operators on the right-hand side of
Eq. �2� are the left and right Riemann-Liouville fractional
derivatives �25,26�

aDx
�� =

1

��m − ��
�m

�xm�
a

x �

�x − y��+1−mdy , �4�

xDb
�� =

�− 1�m

��m − ��
�m

�xm�
x

b �

�y − x��+1−mdy , �5�

with m−1��
m. The weighting factors l and r are defined
as

l = −
�1 − ��

2 cos���/2�
, r = −

�1 + ��
2 cos���/2�

, �6�

with −1
�
1. According to Eqs. �2� and �6�, the parameter
� determines the degree of asymmetry of the fractional op-
erator. For �=0 the contributions of left and right derivatives
are equal and the operator is symmetric. In the extremal,
fully asymmetric case of main interest in this paper, �=−1,
and only the left derivative is present in the diffusion opera-
tor. Equation �2� describes the fluid limit of a continuous
time random walk �CTRW� in the case when the waiting
time distribution function exhibits algebraic decay of the
form, �� t−1−�, and the particle jumps follow an �-stable
Lévy distribution; see, for example, �6�, and references
therein.

The fractional equation �2� has found applications in sev-
eral areas of physics, engineering, and biology. For a recent
discussion on the basic theory and applications of fractional
diffusion, see �5�. However, more general transport equations
can be obtained when a wider class of stochastic processes
are considered. In particular, in the case when the particle
jump probability density function corresponds to an expo-
nentially truncated �tempered� distribution with characteristic
exponent of the form �20�
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�ET = iak −
c

2 cos���/2�

���1 + ���� + ik�� + �1 − ���� − ik�� − 2��,

�1 + ���� + ik�� + �1 − ���� − ik�� − 2��

− 2ik����−1,
	 �7�

for 0
�
1 and 1
��2, respectively. The fluid limit of
the corresponding CTRW leads to the equation �23�

0
cDt

�� = − V�x� + cDx
�,�� − �� , �8�

where the �-truncated fractional derivative operator of order
�, Dx

�,�, is defined as

Dx
�,� = le−�x

−�Dx
�e�x + re�x

xD�
�e−�x. �9�

The effective advection velocity is V=a for 0
�
1 and
V=a−v for 1
�
2 with

v =
c����−1


cos���/2�

�10�

and

� = −
c��

cos���/2�
. �11�

According to Eq. �10�, in the case 1
�
2, the truncation
gives rise to a drift that depends on the asymmetry of the
process. The parameter � determines the truncation of the
tempered Lévy process whose corresponding Lévy density is
given by �20�

wET�x� = �c
�1 + ��

2

x
−�1+��e−�
x
 for x 
 0,

c
�1 − ��

2
x−�1+��e−�x for x � 0,	 �12�

0
��2, c�0, −1���1, and ��0. As expected, for �
=0, Eq. �12� reduces to the �-stable density, and Eq. �8�
reduces to Eq. �2�.

The general solution of Eq. �8� for an initial condition
��x , t=0�=��x ,0� is

��x,t� = �
−�

�

G�,�,�,��x − x�,t���x�,0�dx�, �13�

where G�,�,�,� is the Green’s function or propagator which
corresponds to the solution with initial condition ��x , t=0�
=��x�. The subscripts of G state explicitly that in general the
solution depends on four parameters: the order of the frac-
tional derivative in space �, the order of the fractional time
derivative �, the asymmetry of the fractional operator �, and
the truncation �. Using the Fourier transform properties of
the truncated fractional derivative it follows that

G�,�,�,��x,t� =
1

2�
�

−�

�

e−ikxE��t��ET�k��dk , �14�

where E� denotes the Mittag-Leffler function and �ET is
given in Eq. �7�. At first sight the linear term, −��, on the
right-hand side of Eq. �8� seems strange and likely to give

rise to an unphysical damping of the transported field �.
However, quite to the contrary, this term is critical to guar-
antee the conservation of �. When � is interpreted as a prob-
ability density function, this term guarantees the normaliza-
tion and conservation of the total probability. One way to see
this is to note that this term comes from the term propor-
tional to −2�� in �7�, which implies �ET�k=0�=0. According
to Eqs. �13� and �14� ���x , t�dx=E��t��ET�k=0����0�x�dx
which guarantees the conservation of � provide �ET�k=0�
=0, since E��0�=1.

In this paper we focus on the special case of Eq. �8� with
1
�
2, �=1, and �=−1. Also, we assume an advection
velocity a=v, which results in the following asymmetric,
truncated fractional equation:

�t� = ��e−�x
−�Dx

��e�x�� − ���� , �15�

with �=c / 
cos��� /2�
. We restrict attention to this special
case because it corresponds to the truncated version of the
�-stable asymmetric fractional operator used in the front ac-
celeration problem discussed in Ref. �10�. For this case, the
general solution in Eq. �14� reduces to

G�,1,−1,� =
1

2�
�

−�

�

e−ikx+�t��� − ik��−���dk , �16�

which can be equivalently written as

G�,1,−1,� = e−�x−���t��t�−1/�Ĝ�,1,−1,0��� , �17�

where

Ĝ�,1,−1,0��� =
1

2�
�

−�

�

ei�k�+ik�dk �18�

is the Green’s function of the asymmetric, �-stable ��=0�
fractional diffusion equation, in terms of the similarity vari-
able �=x��t�−1/�. From here, using the asymptotic expres-

sion, Ĝ�,1,−1,0�����−1−� for ��0 �27,28� it follows that

G�,1,−1,� � �te−���t e
−�x

x1+� , �19�

for x�0 and x� ��t�1/�. For the decay of the left tail, we

use the asymptotic expansion Ĝ�,1,−1,0����
�
a2e−b2
�
c2 for
�
0 and 
�
�1, where a2= �2−�� / �2��−1��, b2= ��
−1���/��−1�, and c2=� / ��−1� �28�, to conclude

G�,1,−1,� � ��t�−�a2+1�/�e−���t
x
a2e−b2��t�−c2/�
x
c2+�
x
 �20�

for x
0 and 
x
� ��t�1/�. Since we are assuming that 1

�
2, it follows that c2�1 and the −
x
c2 term in the ex-
ponent dominates the �
x
 term, leading to a faster than ex-
ponential decay of the left tail for any value of �. Figure 1
shows plots of the Green’s function in Eq. �16� for �=1.5
and different values of �, along with the asymptotic approxi-
mation in Eq. �19�.

An important property of truncated Lévy flights, origi-
nally discussed in Refs. �19,21,22�, is the ultraslow conver-
gence to Gaussian statistics. According to this result, the
crossover time for Gaussian behavior to appear, c, scales as
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c � �−1�−�, �21�

as expected, as �→0, →�. When memory effects are in-
corporated using fractional time derivatives, the crossover
dynamics is richer. In particular, for 2� /��1, c
��−1/��−�/� signals the crossover from superdiffusive to
subdiffusive dynamics �23�. The time scale c will play an
important role in the dynamics of the fronts.

III. FRONT PROPAGATION IN THE PRESENCE OF
TRUNCATED LÉVY FLIGHTS: NUMERICAL RESULTS

To study the role of truncation in the superdiffusive accel-
eration of fronts due to Lévy flights we consider the frac-
tional Fisher-Kolmogorov equation originally introduced in
Ref. �10� and substitute the Riemann-Liouville fractional de-
rivatives �which correspond to �-stable Lévy processes� by
the truncated fractional derivative in Eq. �9�. In the most
general case the resulting equation is

0
cDt

�� = − V�x� + cDx
�,�� − �� + ���1 − �� . �22�

However, as mentioned before, to compare the results with
those in Ref. �10� we will restrict attention to asymmetric,
truncated fractional diffusion operators of the form in Eq.
�15� and consider

�t� = ��e−�x
−�Dx

��e�x�� − ���� + ���1 − �� . �23�

In this section we present results obtained from the numeri-
cal integration of Eq. �23�. We assume �=A, for x
0, where
A is a constant and discretize the fractional derivative in the
x� �0,1� domain using the Grunwald-Letnikov representa-
tion. Details of finite-difference methods for the solution of
fractional diffusion equations can be found in �29,30�. In all
the numerical simulations we consider �=1.5, �=−1, �=1,
�=5�10−7, and initial conditions of the form

��x,t = 0� = e−	x, �24�

where 	 is a constant.
Figure 2�a� shows snapshots of the front profile � as func-

tion of x at different times in the �-stable ��=0� case ob-
tained from the numerical solution of Eq. �23�. In this case
the front exhibits an algebraically decaying tail which in log-
log scale manifests as a straight line �10�. Figure 2�b� shows
that the algebraic decay of the tail remains for small values
of �. In fact, as we will discuss in the next section, there is an
intermediate asymptotic regime in which the role of trunca-
tion is negligible. Outside the intermediate asymptotic re-
gime the effect of the truncation depends critically on the
ratio of the length scale of the truncation, 1 /�, and length
scale 1 /	 of the initial condition. When, �
	, i.e., when the
initial condition decays faster than the truncation, the tail of
the front scales as ��x−1−�e−�x as shown in Fig. 2�c�. On
the other hand, when ��	, the truncation effects dominate
and Lévy statistics seems to have no effect on the dynamics
of the front which, as shown in Fig. 2�d� �note the log-
normal scale�, exhibits the usual exponential decay of the
diffusive Fisher-Kolmogorov model.

When the front exhibits “rigid” propagation with a con-
stant velocity, as in the diffusive Fisher-Kolmogorov case, it
is straightforward to define and numerically compute the
front speed. However, when the front accelerates and de-
forms, as is the case in the �-stable and truncated fractional
Fisher-Kolmogorov equation, computing the front speed is
not straightforward. One way to approach this problem is to
consider the Lagrangian trajectory of the front’s tail. For a
given value of �0, we define the Lagrangian trajectory, xL
=xL�t�, of the front according to �(xL�t� , t)=�0. Given xL we
define the Lagrangian velocity as vL=dxL /dt and the La-
grangian acceleration as aL=dvL /dt.

Figure 3 shows space-time plots of the Lagrangian trajec-
tories of fronts corresponding to �0=10−6. Due to the rela-
tively small value of �0, these orbits follow the Lagrangian
dynamics of the fronts’ leading edge. The solid lines denote
the numerical values for different values of � and the dashed
lines denote the result of the asymptotic analytic calculation
that will be discussed in the next section. For 0��
1 it is
observed that the front propagates very fast. However, as �
increases the speed of the front is reduced. The correspond-
ing Lagrangian velocities and accelerations are shown in
Figs. 4 and 5. For small �, the front acceleration grows
monotonically. However, for larger values of � the Lagrang-
ian velocity approaches a terminal velocity as t→�. Note
that as � increases, the terminal velocity is smaller and the
convergence is faster.

As shown in Fig. 5, in all cases the acceleration exhibits a
pulselike behavior in the time evolution. The time of peaking
of the pulse increases �approximately exponentially� with �
and the amplitude of the acceleration’s peak decreases �ap-
proximately exponentially� with �. However, the key feature
to note is the evolution of the acceleration following the
transient short pulse. For small � the front acceleration ex-
hibits a monotonic increase whereas for larger values the
acceleration exhibits a transient growth followed by an even-
tual decay. Figure 6 shows the asymptotic scaling behavior

0 0.1 0.2 0.3 0.4 0.5 0.6
10

-8

10
-6

10
-4

10
-2

10
0

10
2

x

λ=0

λ=20

λ=10

G

FIG. 1. �Color online� Green’s functions of the asymmetric trun-
cated fractional diffusion Eq. �16� for �=1.5, �=−1, and �=0, 10,
and 20. The solid �blue� lines show G as a function of x for fixed t,
and the dashed �black� lines show the corresponding asymptotic
dependence according to Eq. �19�. The numerical and asymptotic
results are practically indistinguishable for x�0.1, and for visual-
ization purposes the asymptotic result has been shifted downward a
little in the plot.
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of the Lagrangian velocity and acceleration. The solid line
curves denote the numerical results for different values of �.
It is observed that the convergence to the terminal velocity
scales as v*−vL�1 / t and the decay of the transient accel-
eration scales as aL�1 / t2. These numerical results are in
agreement with the asymptotic scaling, shown with dashed
line curves, which will be discussed in the following section.

IV. LEADING EDGE ASYMPTOTIC DYNAMICS:
ANALYTICAL RESULTS

In this section we present analytical results describing the
asymptotic behavior of fronts in the truncated fractional
Fisher-Kolmogorov equation. The results are based on the
leading edge approximation. This approximation exploits the
idea that at the leading edge of the front ��1, and therefore
in this region the nonlinear reaction term can be linearized
around �=0, resulting in the linear equation

�t� = �e−�x
−�Dx

��e�x�� + �� − ����� . �25�

Note that the truncated fractional derivative has a direct ef-
fect on the growth rate through the term −���. As discussed
in the previous section, this term is key to guarantee the
conservation of the transported field. Two characteristic time
scales can be distinguished in this problem: the time scale for
the crossover to Gaussian statistics, c�1 / �����, and the
reaction time scale, r=1 /�. We will assume that c�r to
guarantee that the effective reaction constant �eff=�−��� is
positive as needed for the excitation and propagation of
“pull”-type fronts.

Substituting
� = e−�x+��−����t��x,t� �26�

into Eq. �25� gives the asymmetric, �-stable fractional diffu-
sion equation

�t� = �−�Dx
�� . �27�
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FIG. 2. �Color online� Depending on the value of the truncation parameter �, four front propagation regimes can be distinguished in the
truncated fractional Fisher-Kolmogorov Eq. �23�. �a� Asymptotic algebraic regime for �=0; �b� intermediate asymptotic algebraic regime for
��0; �c� truncated regime for 0
�
	; �d� overtruncated regime for ��	. In all four panels the leftmost �red� curve denotes the initial
condition in Eq. �24� and the other �blue� solid line curves show the front profiles at different times. The dashed �red� curve shows the
analytical asymptotic result according to Eq. �36� with A=0 in �a� and �b�; according to Eq. �45� in �c�; and according to Eq. �53� in �d�. In
all cases �=1.5, �=−1, �=1, and �=5�10−7.
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The general solution of this equation for an initial condition
��x , t=0�=�0�x� can be written as

��x,t� = �
−�

�

Ĝ�,1,−1,0����0�x − ��t�1/���d� , �28�

where Ĝ�,1,−1,0 is given in Eq. �18�.
Consistent with the numerical simulations, we consider an

initial condition of the form ��x , t=0�=A for x
0 and
��x , t=0�=e−	x, where A and 	 are constants. Substituting
the corresponding initial condition for �, according to Eq.
�26�, into the solution in Eq. �28� we get

� = e−�	−��x�
−�

x/

e�	−���Ĝ�,1,−1,0���d�

+ Ae�x�
x/

�

Ĝ�,1,−1,0���e−��d� , �29�

where we have defined = ��t�1/�. In terms of � the solution
can be written as

� = e−	x+��−����tI1 + Ae��−����tI2, �30�

where

I1 = �
−�

x/

e�	−���Ĝ�,1,−1,0���d� ,

I2 = �
x/

�

Ĝ�,1,−1,0���e−��d� . �31�

The goal of this section is to study the asymptotic behavior
of I1 and I2 for x /→�. Before getting into the calculation

of main interest here, it is instructive to consider first the
diffusive �Gaussian� and fractional ��-stable� limits of the
leading edge solution in Eq. �30�.

A. Diffusive case

In the diffusive �Gaussian� case, �� ,� ,��= �2,0 ,0�, the
leading edge solution in Eq. �30� reduces to

� = e−	x+�t�
−�

x/��t

Ĝ2,1,0,0���e	���td� + Ae�t�
x/��t

�

Ĝ2,1,0,0d� ,

�32�

where Ĝ2,1,0,0=1 / �2���e−�2/4 is the Gaussian propagator. In-
troducing the normal probability distribution function P�z�
= �1 /�2���−�

z e−u2/2du,

� = e−	x+��+	2��tP� x − 2	�t
�2�t

 + Ae�t�1 − P� x
�2�t

� .

�33�

Using the asymptotic expansion P�z��1− �1 /�2��e−z2/2 /z,
we conclude that in the limit �=x /�1, x�2	�t

� � e−	�x−ct� +��t

�
�A

x
−

1

x − 2	�t
e−��/cm

2 t��x−cmt��x+cmt�,

�34�

where
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FIG. 4. �Color online� Time dependence of Lagrangian front
velocities vL�t�=dxL�t� /dt according to the asymmetric truncated
fractional Fisher-Kolmogorov equation �23� with �=1.5, �=−1, �
=1, �=5�10−7, and different values of �. The solid �blue� curves
denote the numerical results and the dashed �red� curves the
asymptotic result according to Eq. �48�. The horizontal �black�
dashed lines denote the corresponding terminal velocities according
to Eq. �50�. The solid �green� line at the bottom denotes the corre-
sponding front speed in the Gaussian diffusive case according to
Eq. �35�.
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FIG. 3. �Color online� Space-time Lagrangian front paths,
�(xL�t� , t)=�0 with �0=10−6, according to the asymmetric trun-
cated fractional Fisher-Kolmogorov equation �23� with �=1.5,
�=−1, �=1, �=5�10−7, and different values of �. The solid �blue�
curves denote the numerical results and the dashed �red� curves the
asymptotic result according to Eq. �47�. The dotted �green� lines
denote the front speed �upper line� and the minimum front speed
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the �=1 case shows, the effect of truncation is negligible in the
intermediate asymptotic regime.
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c =
�

	
+ 	� . �35�

That is, in this case, the leading edge exhibits the well-
known asymptotic exponential dependence, ��e−	�x−ct�, and
the front propagates at the constant speed c with cm=2���
corresponding to the minimum speed achieved for 	=�� /�.
Note that according to Eq. �34� in this case the convergence
to constant speed is exponentially fast, i.e., the second term
in the asymptotic expansion scales as �e−a�x / �2

. This result
will be contrasted below with the much slower convergence
in the case of truncated Lévy flights.

B. Fractional case

The fractional ��-stable� case was discussed in Ref. �10�.
In this case, the leading edge solution is given by Eqs. �30�
and �31� with �=0 and the corresponding leading asymptotic
behavior is

� � �te�t�A

�
x−� +

1

	
x−1−� + ¯  , �36�

where as mentioned before the constant A relates to the
boundary condition �=A for x
0. The critical difference
from the Gaussian case is the algebraic decay of the leading
edge accompanied by the exponential acceleration of the
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FIG. 5. �Color online� Depen-
dence of front acceleration on
truncation. The panels show the
time dependence of the Lagrang-
ian front acceleration aL�t�
=dvL�t� /dt, according to the
asymmetric truncated fractional
Fisher-Kolmogorov equation �23�
with �=1.5, �=−1, �=1, �=5
�10−7, and different values of �.
The solid �blue� curves denote the
numerical results and the dashed
�red� curves the asymptotic result
according to Eqs. �39� and �51�. In
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gime �a�–�c� the front exhibits
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eration. In the truncated regime,
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front. Note that when A�0 �which was the case considered
in Ref. �10�� the front tail exhibits the decay ��1 /x�. How-
ever, when A=0, the front decays faster, ��1 /x�+1. Figure
2�a� shows a numerical verification of this scaling. This re-
sult will be contrasted with the truncated Lévy flight case,
where, as in the Gaussian case, it will be shown that the rate
of decay of the front’s tail is independent of A.

In the Gaussian case, the spatiotemporal evolution of the
leading edge depends to leading order on the variable x−ct
which implies a “rigid” translation of the exponential tail of
the front and allows the interpretation of c as the front. How-
ever, in the non-Gaussian case each point of the leading edge
moves at a different speed and the tail does not translate
rigidly. As discussed in the previous section we circumvent
this problem by considering the Lagrangian trajectory xL
=xL�t ;�0� of a point in the leading edge of the front such that
�(xL�t� , t)=�0 where �0�1. According to Eq. �36�, in the
�-stable case, for A=0,

xL�t� = C exp� 1

1 + �
��t + ln t� , �37�

where C is a constant that depends on �0, �, and 	, and

vL�t� =
�

1 + �
� �t

�0	
1/�1+��� 1

�t
+ 1�e��/�1+���t, �38�

which implies an unbounded, exponential growth of the front
speed. For large t, the corresponding leading-order behavior
of the front acceleration is

aL�t� = � �

1 + �
2� �t

�0	
1/�1+��

e��/�1+���t. �39�

As shown in Figs. 3–5 the asymptotic results in Eqs.
�37�–�39� are in good agreement with the numerical results
discussed in the previous section.

C. Truncated case

Going back to the general truncated fractional case, we
consider first the asymptotic behavior of I2 in Eq. �31�. In
the limit x /→�, the integration variable satisfies ��1 and
thus we can use the asymptotic expression of the Green’s
function corresponding to the right, algebraically decaying
tail, G�,1,−1,0��−�1+��, and get, after an integration by parts,
the asymptotic expansion

I2 � �
x/

�

e−���−�1+��d�

=
�

�

e−�x

x1+� −
� + 1

�
�

x/

�

e−���−��+2�d� . �40�

Integration by parts once more gives the next term in the
asymptotic series,

I2 �
�

�

e−�x

x1+��1 −
�� + 1�

�x
+ ¯  . �41�

To deal with I1, introduce a cutoff � such that 1�� and
write the integral as

I1 = C + �
�

x/

e�	−���Ĝ�,1,−1,0���d� , �42�

where the constant on the right-hand side is defined as C
=�−�

� e�	−���G�,1,−1,0���d�. Note that because of the faster
than exponential decay of the asymmetric Lévy distribution
G�,1,−1,0��� for �
0 in Eq. �20� the integrals converge for
either sign of 	−�. Since both the cutoff � and x / are
assumed to be large, we can substitute as before the
asymptotic expression of the Green’s function in the integral
of Eq. �42�, and after an integration by parts obtain the
asymptotic expansion

I1 � C +
�

	 − �

e�	−��x

x1+� + ¯ . �43�

Substituting Eqs. �43� and �41� into Eq. �30� we get

� � Ce−	x+��−����t + � 1

	 − �
+

A

�
 �t

x�+1e−�x+��−����t �44�

for 	��. The issue now is to determine the leading order
term in Eq. �44�. The answer to this problem depends on the
relative values of 	 and �.

If 	���0, i.e., if the initial condition decays faster than
the truncation, the leading order term in Eq. �44� for large x
is

� � � 1

	 − �
+

A

�
 t�

x1+�e−�x+��−����t. �45�

Note that, contrary to the �-stable case, the asymptotic spa-
tial decay of the front leading edge in Eq. �45� is independent
of the value of A. The role of the truncation is clearly seen in
the exponential factor e−�x that dominates the decay for x
�1 /�. Figure 2�c� shows a very good agreement between
the numerical result and the scaling in Eq. �45�.

When x�1 /� we can expand the exponential in Eq. �45�
and write

� � � 1

	 − �
+

A

�
t�e��−����t 1

x1+��1 − �x +
�2

2
x2

¯  .

�46�

According to Eq. �46� in the intermediate asymptotic regime
��t�1/��x�1 /�, the front exhibits to leading order the ideal
�untruncated� Lévy flight algebraic scaling, ��1 /x1+�. This
scaling is numerically verified in Fig. 2�b�. Moreover, as
Figs. 3–5 show, in the intermediate asymptotic regime
�which in the numerical simulations roughly corresponds to
0
��1�, the front’s velocity and acceleration exhibit un-
bounded monotonic growth and follow to a good approxima-
tion the ideal Lévy flight scaling in Eqs. �37�–�39�.

Going back to Eq. �45� we have that outside the interme-
diate asymptotic regime, i.e., for x�1 /�, the Lagrangian tra-
jectory of the front is given by

− �xL�t� + �� − ����t + ln t − �� + 1�ln xL�t� = M , �47�

where M is a constant that depends on �0. From Eq. �47� we
obtain the following expression for the Lagrangian velocity
of the front, vL=dxL�t� /dt:
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vL�t� =
� − ��� + 1/t

� + �� + 1�/xL�t�
. �48�

As shown in Figs. 3 and 4 there is good agreement between
the numerical results �solid lines� and Eqs. �47� and �48�
�dashed lines� in the asymptotic regime x� ��t�1/�. From Eq.
�48� it follows that in the limit t→�

vL � v* −
�

�t
¯ , �49�

where the terminal velocity is given by

v* =
� − ���

�
, �50�

which is positive since it has been assumed that �����. The
asymptotic approach to the terminal velocity is clearly ob-
served in Fig. 4 where the horizontal dashed lines show the
terminal velocity in Eq. �50� for the values of � considered in
the numerical simulations. According to Eq. �49� the time
required for the front velocity to approach the terminal ve-
locity within a given margin v*−vL scales as t�1 /�. The
corresponding Lagrangian acceleration of the front, aL
=dvL�t� /dt, is given by

aL�t� =
vL�t�

t��tv* + 1�
��� + 1�� vL�t�

xL�t�/t
2

− 1� . �51�

From Eqs. �48� and �51� it follows that for large times

aL�t� �
�

�t2 . �52�

As shown in Fig. 6, the analytical scaling relations agree
well with the numerical results. In this figure, the curved
dashed lines correspond to the analytical result in Eqs. �48�
and �51� and the straight dashed lines correspond to the scal-
ing in Eqs. �50� and �52�. Thus, outside the intermediate
asymptotic regime, i.e., for 1 /�
x, the front acceleration
decays and the front approaches a constant terminal velocity
as t→�. However, the convergence of the dynamics to the
constant front velocity regimen exhibits a very slow,
�1 / ��t�, algebraic decay compared to the significantly faster
exponential convergence in the diffusive case.

The calculations presented up to now assumed 	��.
However, when ��	, i.e., when the initial condition decays
more slowly than the truncation, the leading order term in
Eq. �44� is

� � Ce−	x+��−����t, �53�

which indicates that the front moves with the constant veloc-
ity

v =
� − ���

	
. �54�

An example of this overtruncated regime is presented in Fig.
2�d�, which shows a very good agreement with the exponen-
tial decay in Eq. �53� for �=100 and 	=50. The remaining
case to consider is �=	. In this case, the asymptotic approxi-
mation in Eq. �41� still holds. However, the expression in Eq.

�43� cannot be used, and we have to go back to the integral
I1 Eq. �42�,

I1 = C + �
�

x/

G�,1,−1,0���d� , �55�

where this time the constant on the right-hand side is defined

as C=�−�
� Ĝ�,1,−1,0���d�. Using the asymptotic expression for

Ĝ�,1,−1,0��−1−� and integrating, it is concluded that the
leading order term in Eq. �30� is ��Ce−�x+��−����t, which
implies that the constant velocity of the front is given by Eq.
�54� with 	=�.

V. CONCLUSIONS

We have presented a numerical and analytical study of the
role of truncated Lévy flights in the propagation of fronts in
reaction superdiffusion systems. The study was based on the
truncated fractional Fisher-Kolmogorov model in which the
spatial derivative is replaced by the �-truncated fractional
derivative of order �.

Depending on the level of truncation four front propaga-
tion regimes can be distinguished: an asymptotic algebraic
regime, an intermediate asymptotic algebraic regime, a trun-
cated regime, and an overtruncated regime. The asymptotic
algebraic regime corresponds to �=0. In this case the prob-
lem reduces to the �-stable fractional Fisher-Kolmogorov
problem which exhibits exponential acceleration and alge-
braically decaying tails for x� ��t�1/�. The intermediate
asymptotic regime is characterized by ��t�1/��x�1 /�. We
have shown numerically and analytically that in this regime
the truncation effects are negligible and the algebraic decay
of the tail as well as the acceleration of the front prevail.
Outside the intermediate asymptotic regime, i.e., for x
�1 /� and ��t�1/��x, the tail of the front exhibits the tem-
pered decay ��e−�x /x1+�, the acceleration is transient, and
the front eventually reaches a terminal speed as t→�. In the
overtruncated regime the truncation decays faster than the
initial condition, i.e., ��	. In this case, Lévy flights have
apparently no qualitative effect on the asymptotic dynamics
of the front that exhibits a diffusive-type exponential tail,
��e−	x, and constant propagation velocity v=�eff /	. How-
ever, contrary to the diffusive case, the constant velocity in
the overtruncated case is a monotonically decaying function
of 	 and has no finite minimum.

Although in the truncated regime the acceleration decays
and the front eventually reaches a constant terminal speed,
the numerical and analytical results show that the conver-
gence of this process is very slow. In particular the front
acceleration asymptotically decays as aL�� / ��t2� and the
approach to the terminal velocity scales as vL�v*−� / ��t�.
This algebraic convergence is in sharp contrast with the ex-
ponential convergence observed in the diffusive Fisher-
Kolmogorov equation. In this sense the truncated regime re-
sembles the “ultraslow” convergence regimen observed in
transport problems without reaction terms.

One of the motivations and potential applications of the
present work lays on the study of transport in magnetically
confined plasmas. In this system it has been suggested that
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reaction diffusion models provide insightful, though highly
simplified, reduced descriptions of the interaction of turbu-
lence and transport. Current models usually assume Laplac-
ian diffusive operators; see, for example, Ref. �31�. However,
there is evidence that transport in magnetically confined
plasmas is not necessarily diffusive; see, for example, �32�,
and references therein. On the other hand, it has been argued
that truncated Lévy distributions might play a role in the
description of electrostatic potential fluctuations �33�. Based
on this, it would be of interest to explore the implications of
the present work for the corresponding plasma transport
models.

Throughout this paper we have limited attention to ex-
tremal, �=−1, transport processes and assumed an external
advection velocity to cancel the drift resulting from the trun-
cation of the asymmetric fractional derivative. A problem of
interest is to perform more general numerical simulations
considering different degrees of asymmetry and including
memory effects through the use of fractional derivatives in

time. As mentioned in the Introduction, in recent years sev-
eral papers have discussed the role of Lévy flights in front
propagation and pattern formation in reaction–anomalous-
diffusion systems. It would be of interest to explore the role
of truncation effects in these systems. Beyond its intrinsic
theoretical interest, the study presented here might have rel-
evance in the interpretation and modeling of laboratory ex-
periments and numerical simulations of complex systems. It
is plausible that in these systems, the presence of boundary
conditions, finite size domain and decorrelation could intro-
duce nonideal Lévy flight dynamics of the type discussed
here.
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